503 research outputs found

    The Developmental Neurobiology of Brain Connectivity in Schizophrenia

    Get PDF
    Much work over the past two decades supports the concept that schizophrenia involves a disruption in the orchestration of the multiple neural networks that participate in higher cognitive functions. The connectivity between neural networks arising during normal development is potentially disrupted, leading to the recruitment of either inappropriate regions for task execution, or alternatively, alters the processing requirements in expected regions. For example, studies utilizing both glucose metabolism (FDG-PET), SPECT, and H2O15 PET have demonstrated hypofrontality in the dorslolateral prefrontal cortex (DLPFC) on tasks of executive function. Additionally, studies utilizing diffusion tensor imaging (DTI), which measures the coherence of neuronal fiber tracts, have shown a decrease in the coherence of white matter tracts in schizophrenia. This is presumed to be additional evidence for disrupted connectivity in schizophrenia

    The longitudinal bidirectional relationship between autistic traits and brain morphology from childhood to adolescence:a population-based cohort study

    Get PDF
    OBJECTIVE: Autistic traits are associated with alterations in brain morphology. However, the anatomic location of these differences and their developmental trajectories are unclear. The primary objective of this longitudinal study was to explore the bidirectional relationship between autistic traits and brain morphology from childhood to adolescence. METHOD: Participants were drawn from a population-based cohort. Cross-sectional and longitudinal analyses included 1950 (mean age 13.5) and 304 participants (mean ages 6.2 and 13.5), respectively. Autistic traits were measured with the Social Responsiveness Scale. Global brain measures and surface-based measures of gyrification, cortical thickness and surface area were obtained from T(1)-weighted MRI scans. Cross-sectional associations were assessed using linear regression analyses. Cross-lagged panel models were used to determine the longitudinal bidirectional relationship between autistic traits and brain morphology. RESULTS: Cross-sectionally, higher levels of autistic traits in adolescents are associated with lower gyrification in the pars opercularis, insula and superior temporal cortex; smaller surface area in the middle temporal and postcentral cortex; larger cortical thickness in the superior frontal cortex; and smaller cerebellum cortex volume. Longitudinally, both autistic traits and brain measures were quite stable, with neither brain measures predicting changes in autistic traits, nor vice-versa. LIMITATIONS: Autistic traits were assessed at only two time points, and thus we could not distinguish within- versus between-person effects. Furthermore, two different MRI scanners were used between baseline and follow-up for imaging data acquisition. CONCLUSIONS: Our findings point to early changes in brain morphology in children with autistic symptoms that remain quite stable over time. The observed relationship did not change substantially after excluding children with high levels of autistic traits, bolstering the evidence for the extension of the neurobiology of autistic traits to the general population. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13229-022-00504-7

    Integrated Analysis and Visualization of Group Differences in Structural and Functional Brain Connectivity: Applications in Typical Ageing and Schizophrenia

    Get PDF
    Structural and functional brain connectivity are increasingly used to identify and analyze group differences in studies of brain disease. This study presents methods to analyze uniand bi-modal brain connectivity and evaluate their ability to identify differences. Novel visualizations of significantly different connections comparing multiple metrics are presented. On the global level, "bi-modal comparison plots" show the distribution of uni-and bi-modal group differences and the relationship between structure and function. Differences between brain lobes are visualized using "worm plots". Group differences in connections are examined with an existing visualization, the "connectogram". These visualizations were evaluated in two proof-of-concept studies: (1) middle-aged versus elderly subjects; and (2) patients with schizophrenia versus controls. Each included two measures derived from diffusion weighted images and two from functional magnetic resonance images. The structural measures were minimum cost path between two anatomical regions according to the "Statistical Analysis of Minimum cost path based Structural Connectivity" method and the average fractional anisotropy along the fiber. The functional measures were Pearson's correlation and partial correlation of mean regional time series. The relationship between structure and function was similar in both studies. Uni-modal group differences varied greatly between connectivity types. Group differences were identified in both studies globally, within brain lobes and between regions. In the aging study, minimum cost path was highly effective in identifying group differences on all levels; fractional anisotropy and mean correlation showed smaller differences on the brain lobe and regional levels. In the schizophrenia study, minimum cost path and fractional anisotropy showed differences on the global level and within brain lobes; mean correlation showed small differences on the lobe level. Only fractional anisotropy and mean correlation showed regional differences. The presented visualizations were helpful in comparing and evaluating connectivity measures on multiple levels in both studies

    The anatomy of friendship:neuroanatomic homophily of the social brain among classroom friends

    Get PDF
    Homophily refers to the tendency to like similar others. Here, we ask if homophily extends to brain structure. Specifically: do children who like one another have more similar brain structures? We hypothesized that neuroanatomic similarity tied to friendship is most likely to pertain to brain regions that support social cognition. To test this hypothesis, we analyzed friendship network data from 1186 children in 49 classrooms. Within each classroom, we identified “friendship distance”—mutual friends, friends-of-friends, and more distantly connected or unconnected children. In total, 125 children (mean age = 7.57 years, 65 females) also had good quality neuroanatomic magnetic resonance imaging scans from which we extracted properties of the “social brain.” We found that similarity of the social brain varied by friendship distance: mutual friends showed greater similarity in social brain networks compared with friends-of-friends (β = 0.65, t = 2.03, P = 0.045) and even more remotely connected peers (β = 0.77, t = 2.83, P = 0.006); friends-of-friends did not differ from more distantly connected peers (β = −0.13, t = −0.53, P = 0.6). We report that mutual friends have similar “social brain” networks, adding a neuroanatomic dimension to the adage that “birds of a feather flock together.

    Dissecting static and dynamic functional connectivity: Example from the autism spectrum

    Get PDF
    The ability to measure the intrinsic functional architecture of the brain has grown exponentially over the last 2 decades. Measures of intrinsic connectivity within the brain, typically measured using resting-state functional magnetic resonance imaging (MRI), have evolved from primarily “static” approaches, to include dynamic measures of functional connectivity. Measures of dynamic functional connectivity expand the assumptions to allow brain regions to have temporally different patterns of communication between different regions. That is, connections within the brain can differentially fire between different regions at different times, and these differences can be quantified. Applying approaches that measure the dynamic characteristics of functional brain connectivity have been fruitful in identifying differences during brain development and psychopathology. We provide a brief overview of static and dynamic measures of functional connectivity and illustrate the synergy in applying these approaches to identify both age-related differences in children and differences between typically developing children and children with autistic symptoms

    Reduced cortical complexity in children with prader-willi syndrome and its association with cognitive impairment and developmental delay

    Get PDF
    Background: Prader-Willi Syndrome (PWS) is a complex neurogenetic disorder with symptoms involving not only hypothalamic, but also a global, central nervous system dysfunction. Previously, qualitative studies reported polymicrogyria in adults with PWS. However, there have been no quantitative neuroimaging studies of cortical morphology in PWS and no studies to date in children with PWS. Thus, our aim was to investigate and quantify cortical complexity in children with PWS compared to healthy controls. In addition, we investigated differences between genetic subtypes of PWS and the relationship between cortical complexity and intelligence within the PWS group.Methods: High-resolution structural magnetic resonance images were acquired in 24 children with genetically confirmed PWS (12 carrying a deletion (DEL), 12 with maternal uniparental disomy (mUPD)) and 11 age- and sex-matched typically developing siblings as healthy controls. Local gyrification index (lGI) was obtained using the FreeSurfer software suite.Results: Four large clusters, two in each hemisphere, comprising frontal, parietal and temporal lobes, had lower lGI in children with PWS, compared to healthy controls. Clusters with lower lGI also had significantly lower cortical surface area in children with PWS. No differences in cortical thickness of the clusters were found between the PWS and healthy controls. lGI correlated significantly with cortical surface area, but not with cortical thickness. Within the PWS group, lGI in both hemispheres correlated with Total IQ and Verbal IQ, but not with Performance IQ. Children with mUPD, compared to children with DEL, had two small clusters with lower lGI in the right hemisphere. lGI of these clusters correlated with cortical surface area, but not with cortical thickness or IQ.Conclusions: These results suggest that lower cortical complexity in children with PWS partially underlies cognitive impairment and developmental delay, probably due to alterations in gene networks that play a prominent role in early brain development

    Air pollution exposure during pregnancy and childhood, APOE Îľ4 status and Alzheimer polygenic risk score, and brain structural morphology in preadolescents

    Get PDF
    Apolipoprotein E; Genetic modifiers; NeurodevelopmentApolipoproteïna E; Modificadors genètics; NeurodesenvolupamentApolipoproteína E; Modificadores genéticos; NeurodesarrolloBackground Air pollution exposure is associated with impaired neurodevelopment, altered structural brain morphology in children, and neurodegenerative disorders. Differential susceptibility to air pollution may be influenced by genetic features. Objectives To evaluate whether the apolipoprotein E (APOE) genotype or the polygenic risk score (PRS) for Alzheimer's Disease (AD) modify the association between air pollution exposure during pregnancy and childhood and structural brain morphology in preadolescents. Methods We included 1186 children from the Generation R Study. Concentrations of fourteen air pollutants were calculated at participants’ home addresses during pregnancy and childhood using land-use-regression models. Structural brain images were collected at age 9–12 years to assess cortical and subcortical brain volumes. APOE status and PRS for AD were examined as genetic modifiers. Linear regression models were used to conduct single-pollutant and multi-pollutant (using the Deletion/Substitution/Addition algorithm) analyses with a two-way interaction between air pollution and each genetic modifier. Results Higher pregnancy coarse particulate matter (PMcoarse) and childhood polycyclic aromatic hydrocarbons exposure was differentially associated with larger cerebral white matter volume in APOE ε4 carriers compared to non-carriers (29,485 mm3 (95% CI 6,189; 52,781) and 18,663 mm3 (469; 36,856), respectively). Higher pregnancy PMcoarse exposure was differentially associated with larger cortical grey matter volume in children with higher compared to lower PRS for AD (19436 mm3 (825, 38,046)). Discussion APOE status and PRS for AD possibly modify the association between air pollution exposure and brain structural morphology in preadolescents. Higher air pollution exposure is associated with larger cortical volumes in APOE ε4 carriers and children with a high PRS for AD. This is in line with typical brain development, suggesting an antagonistic pleiotropic effect of these genetic features (i.e., protective effect in early-life, but neurodegenerative effect in adulthood). However, we cannot discard chance findings. Future studies should evaluate trajectorial brain development using a longitudinal design.The Generation R Study is conducted by the Erasmus Medical Center in close collaboration with the Faculty of Social Sciences of the Erasmus University Rotterdam, the Municipal Health Service Rotterdam area, Rotterdam, the Rotterdam Homecare Foundation, Rotterdam, and the Stichting Trombosedienst & Artsenlaboratorium Rijnmond (STAR-MDC), Rotterdam. We gratefully acknowledge the contribution of children and parents, general practitioners, hospitals, midwives, and pharmacies in Rotterdam. The general design of the Generation R Study is made possible by financial support from the Erasmus Medical Center, Rotterdam; the Erasmus University Rotterdam; the Netherlands Organization for Health Research and Development (ZonMw); the Netherlands Organization for Scientific Research (NWO); and the Ministry of Health, Welfare and Sport. A.N. was supported by a grant of the Dutch Ministry of Education, Culture, and Science and the Netherlands Organization for Scientific Research (024.001.003, Consortium on Individual Development), a grant of the Canadian Institutes of Health Research team, and by the Research Foundation Flanders (FWO). S.A. was supported by the Programa Talen_UAB-Banc de Santander. The geocodification of the addresses of the study participants and the air pollution estimations were done within the framework of a project funded by the Health Effects Institute (HEI) (Assistance Award No. R-82811201). We received funding from the Spanish Institute of Health Carlos III (CPII18/00018), the EU Commission (733,206, 824,989), and the Agence Nationale de Securite Sanitaire de l’Alimentation de l’Environnement et du Travail (EST-18 RF-25). We acknowledge support from the Spanish Ministry of Science and Innovation and State Research Agency through the “Centro de Excelencia Severo Ochoa 2019–2023” Program (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA Program”
    • …
    corecore